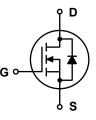


Description

The 600V E series has excellent low on-resistance and gate charge by utilizing charge balance technology . This technology combines the benefits of an excellent switching performance with ease of usage and robustness. Consequently, the 600V E series is suitable for application requiring superior efficiency and extra safety margin for design with higher voltage.

Features

BV _{DSS} @ T _{J,max}	I _D	R _{DS(on),max}	Q _{g,typ}
650 V	19 A	180 mΩ	30.2 nC


- Reduced Switching & Conduction Losses
- Lower Gate Resistance
- 100% Avalanche Tested
- Pb-free and RoHS Compliant
- Compliance with EU REACH

Applications

- PFC, Hard & Soft Switching Topologies
- Industrial & Consumer Power Supplies

Absolute Maximum Ratings (T_c = 25°C unless otherwise noted)

Symbol	Parameter		Value	Unit	
V _{DSS}	Drain to Source Voltage		600	V	
V _{GSS}	Gate to Source Voltage		±30	V	
1	Drain Current	Continuous (T _C = 25°C)	19	A	
I _D		Continuous (T _C = 100°C)	12		
I _{DM}	Drain Current	Pulsed (Note1)	57	А	
E _{AS}	Single Pulsed Avalanche Energy (Note2)		76	mJ	
I _{AS}	Avalanche Current (Note2)		4	А	
E _{AR}	Repetitive Avalanche Energy (Note1)		1.62	mJ	
	MOSFET dv/dt		100	V/ns	
dv/dt	Peak Diode Recovery dv/dt (Note3)		20		
5		(T _C = 25℃)	162	W	
P _D	Power Dissipation	Derate Above 25℃	1.3	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 10 Seconds		260	°C	

Thermal Characteristics

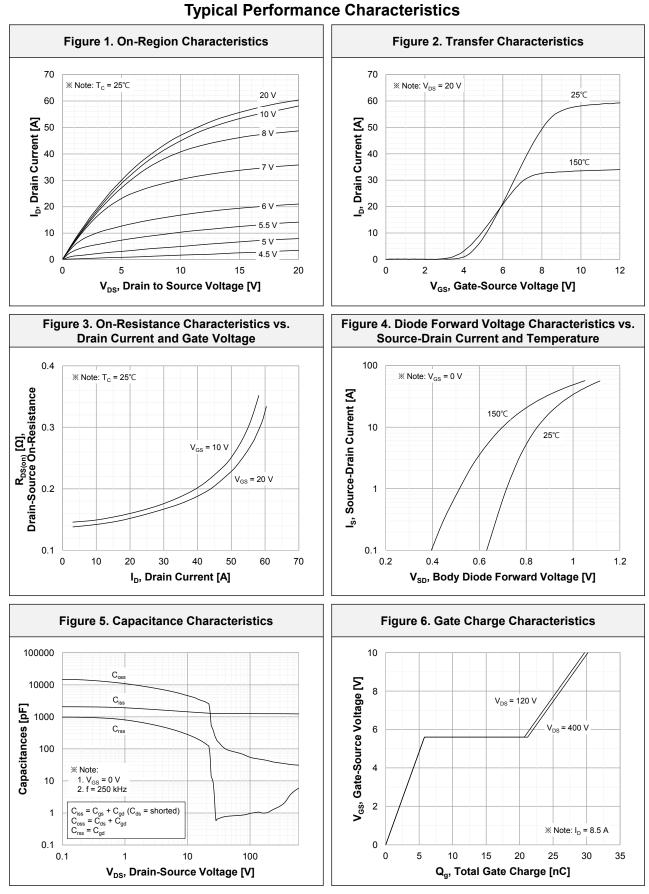
Symbol	Parameter	Value	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max. 0.77		°C AAI	
R _{eja}	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W	

HXMH60M180EH **N-Channel Power MOSFET**

Package Marking and Ordering Information

	Part Number	Top Marking	Package	Packing Method	Quantity
-	HXMH60M180EH	H60M180EH	TO-220AB	Tube	50 units

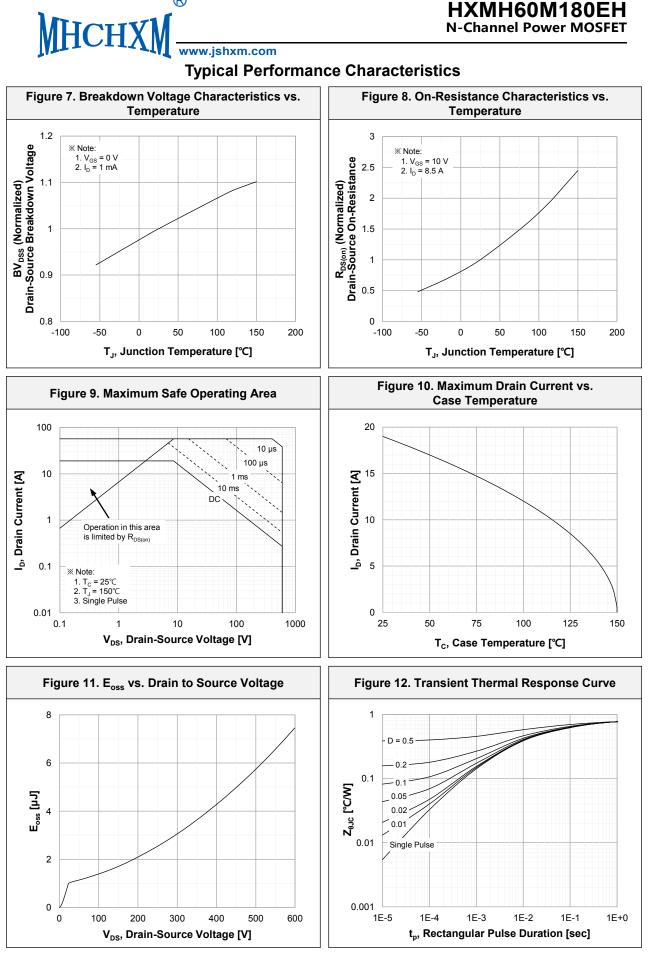
Flectrical Characteristics (T. = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	cteristics					
	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
BV_{DSS}		V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	650			V
		V _{DS} = 600 V, V _{GS} = 0 V			1	-μA
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\rm DS}$ = 480 V, $V_{\rm GS}$ = 0 V, $T_{\rm J}$ = 125°C		2		
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 1.7 \text{ mA}$	2.5		4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 8.5 A		150	180	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 250 kHz		1240		pF
C _{oss}	Output Capacitance			34		pF
C _{o(tr)}	Time Related Output Capacitance	$-V_{\rm DS} = 0$ V to 400 V, $V_{\rm GS} = 0$ V		381		pF
C _{o(er)}	Energy Related Output Capacitance			54		pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 8.5 A, V _{GS} = 10 V		30.2		nC
Q _{gs}	Gate to Source Charge			5.8		nC
Q _{gd}	Gate to Drain "Miller" Charge			15.4		nC
R _G	Gate Resistance	f = 1 MHz		1.3		Ω
Switching	Characteristics				1	
t _{d(on)}	Turn-On Delay Time			12		ns
t _r	Turn-On Rise Time	V _{DS} = 400 V, I _D = 8.5 A,		8		ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 10 \Omega$ See Figure 13		53		ns
t _f	Turn-Off Fall Time			10		ns
Source-D	rain Diode Characteristics					
ا _s	Maximum Continuous Diode Forward Current				19	Α
I _{SM}	Maximum Pulsed Diode Forward Current				57	Α
V _{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 8.5 A			1.2	V
t _{rr}	Reverse Recovery Time	V _{DD} = 400 V, I _{SD} = 8.5 A,		274		ns
Q _{rr}	Reverse Recovery Charge	$dI_{F}/dt = 100 A/\mu s$		3.33		μC

Q_{rr} XNotes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

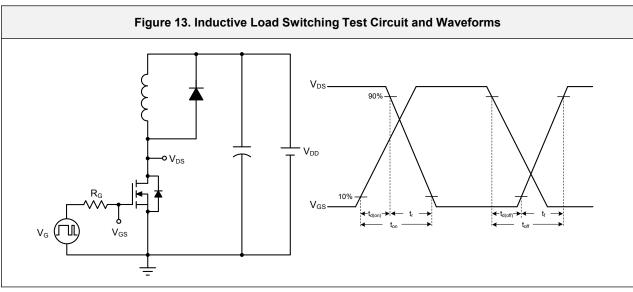
2. $I_{AS} = 4 \text{ A}, R_{G} = 25 \Omega$, starting $T_{J} = 25^{\circ}\text{C}$. 3. $I_{SD} \le 8.5 \text{ A}, \text{ di/dt} \le 100 \text{ A}/\mu\text{s}, V_{DD} \le 400 \text{ V}, \text{ starting } T_{J} = 25^{\circ}\text{C}$.

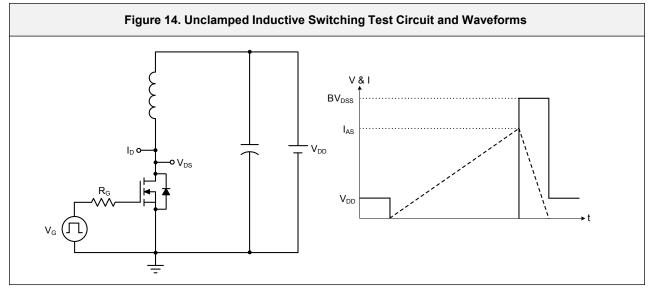


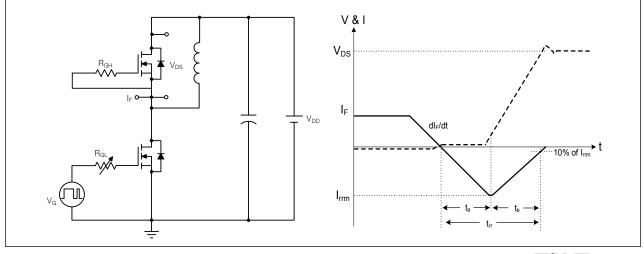
R

www.jshxm.com

HCHX

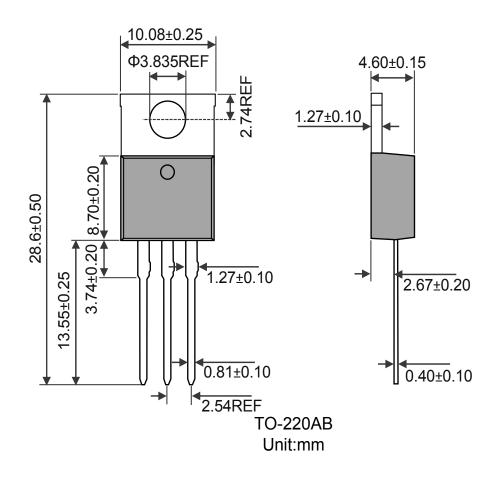

R




HXMH60M180EH N-Channel Power MOSFET

Test Circuits

Figure 15. Peak Diode Recovery dv/dt Test Circuit and Waveforms



Package Outlines

TO-220AB

DISCLAIMER

1. Above specification may be changed without notice. MHCHXM will reserve authority on material change for above specification.

2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.

3.When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. MHCHXM assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.

4. These specification sheets include materials protected under copyright of MHCHXM. Reproduction in any form is prohibited without the specific consent of MHCHXM.

5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized MHCHXM sales agent for special application request.

6.Statements regarding the suitability of products for certain types of applications are based on MHCHXM's knowledge of typical requirements that are often placed on MHCHXM products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify MHCHXM's terms and conditions of purchase, including but not limited to the warranty expressed therein.

7. This publication supersedes & replaces all information previously supplied. For additional application information, please visit our website http://www.jshxm.com, or consult your nearest MHCHXM's sales office for further assistance.

