R HCHXN www.jshxm.com

600 V, 42 A, 75 m Ω

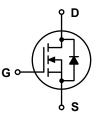
Description

Applications

Soft Switching Topologies

Telecom and Sever Power Supplies EV Charger and Industrial Power Supplies

The 600V FRD series has ultra-fast body diode performance, low on-resistance and reduced gate charge.


It combines the benefits of a fast switching performance with ease of usage and robustness. Additionally, we offer low reverse recovery time (trr) and reverse recovery charge (Qrr) for the bridge structure topology, especially for resonant converters (LLC, PSFB, etc.).

Features

BV _{DSS} @ T _{J,max}	I _D	R _{DS(on),max}	Q _{g,typ}
650 V	42 A	75 mΩ	76 nC

- Reduced Switching & Conduction Losses
- Fast Recovery Body-Diode
- Lower Gate Resistance
- 100% Avalanche Tested
- Pb-free and RoHS Compliant
- Compliance with EU REACH

Reach

Absolute Maximum Ratings (T_c = 25°C unless otherwise noted)

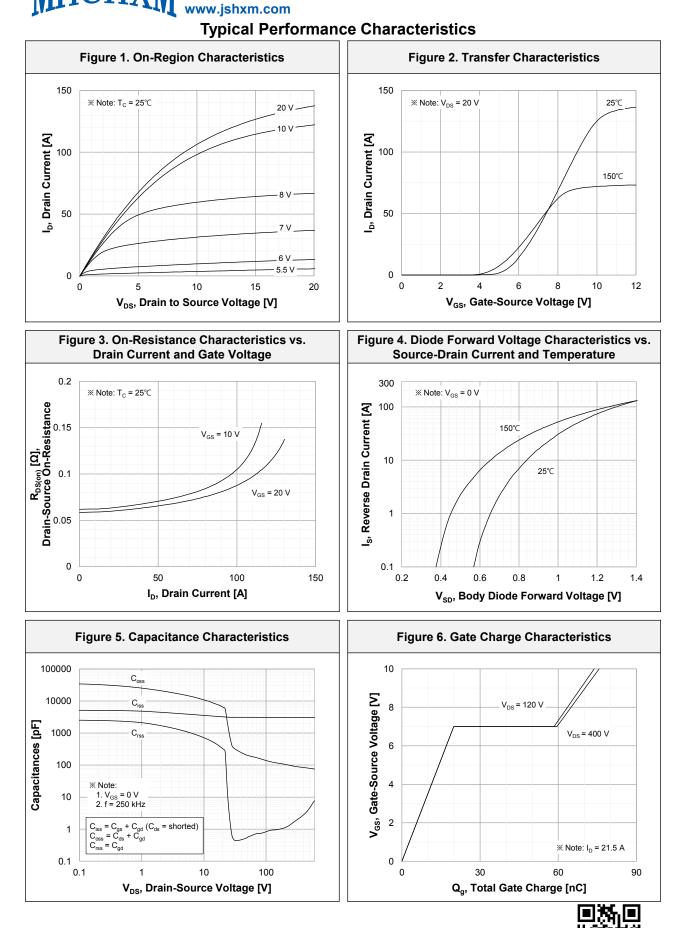
Symbol	Parameter	Value	Unit		
V _{DSS}	Drain to Source Voltage	600	V		
V _{GSS}	Gate to Source Voltage	±30	V		
1	Drain Current	Continuous (T _C = 25℃)	42	٨	
I _D	Drain Current	Continuous (T _C = 100°C)	26.6	A	
I _{DM}	Drain Current	Pulsed (Note1)	126	А	
E _{AS}	Single Pulsed Avalanche Energy (Note2)		254	mJ	
I _{AS}	Avalanche Current (Note2)		6.3	А	
E _{AR}	Repetitive Avalanche Energy (Note1)		3.29	mJ	
dv/dt	MOSFET dv/dt	100	V/ns		
	Peak Diode Recovery dv/dt	50			
P	Davies Diacia effect	(T _C = 25℃)	329	W	
P _D	Power Dissipation	Derate Above 25℃	2.63	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Ran	ge	-55 to 150	°C	
TL	Maximum Lead Temperature for Solderin 1/8" from Case for 10 Seconds	260	°C		

Thermal Characteristics

Symbol	Parameter	Value	Unit		
R _{θJC}	Thermal Resistance, Junction to Case, Max.	0.38			
R _{eja}	Thermal Resistance, Junction to Ambient, Max.	40	W/3°		

Package Marking and Ordering Information

Par	art Number Top Marking		Package Packing		Method		Quantity	
HXMH60M75P H60M		H60M75P	TO-247AB	Tube			30 units	
Electric	al Charact	oristics (T - 25°C ur	lass otherwise noted)					
Symbol	cal Characteristics (T _c = 25°C un Parameter		Test Conditions		Min	Тур	Max	Unit
-	cteristics							
			V _{GS} = 0 V, I _D = 1 mA		600			
BV_{DSS}	Drain to Sourc	ce Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$		650			V
	7		$V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$				10	μA
I _{DSS}	Zero Gate Vol	tage Drain Current	$V_{DS} = 480 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125^{\circ}\text{C}$			30		
I _{GSS}	Gate-Source Leakage Current		V _{GS} = ±30 V, V _{DS} = 0 V	V _{GS} = ±30 V, V _{DS} = 0 V			±100	nA
On Chara	cteristics							•
V _{GS(th)}	Gate Threshol	d Voltage	$V_{GS} = V_{DS}$, $I_D = 2.8$ mA		3.0		5.0	V
R _{DS(on)}	Static Drain to	Source On Resistance	V _{GS} = 10 V, I _D = 21.5 A			64	75	mΩ
Dynamic	Characteristics	5					•	
C _{iss}	Input Capacita	ince	V _{DS} = 400 V, V _{GS} = 0V, f = 250 kHz			3080		pF
C _{oss}	Output Capaci	tance				83		pF
C _{o(tr)}	Time Related	Output Capacitance	$y_{1} = 0 y_{1} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + $			817		pF
C _{o(er)}	Energy Relate	d Output Capacitance	$v_{\rm DS} = 0$ v to 400 v, $v_{\rm GS}$	$V_{\rm DS} = 0$ V to 400 V, $V_{\rm GS} = 0$ V		131		pF
Q _{g(tot)}	Total Gate Cha	arge at 10 V				76		nC
Q_gs			$V_{DS} = 400 \text{ V}, I_D = 21.5 \text{ A}$ $V_{GS} = 10 \text{ V}$			20		nC
Q_{gd}	Gate to Drain	"Miller" Charge				40		nC
R_G	Gate Resistan	се	f = 1 MHz			1		Ω
Switching	J Characteristic	S						
t _{d(on)}	Turn-On Delay	/ Time				20		ns
t _r	Turn-On Rise	Time	$V_{DS} = 400 \text{ V}, I_{D} = 21.5 \text{ A}$	Α,		12		ns
$t_{d(off)}$	Turn-Off Delay	/ Time	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ See Figure 13			61		ns
t _f	Turn-Off Fall T	īme				7		ns
Source-D	rain Diode Cha	racteristics						
۱ _s	Maximum Continuous Diode Forward Current					42	Α	
I _{SM}	Maximum Pulsed Diode Forward Curren		nt				126	Α
$V_{\rm SD}$	Diode Forward	I Voltage	V _{GS} = 0 V, I _{SD} = 21.5 A				1.2	V
t _{rr}	Reverse Reco	very Time	V _{DD} = 400 V, I _{SD} = 21.5 A, dI _F /dt = 100 A/μs			134		ns
Q _{rr}	Reverse Reco	very Charge				0.85		μC

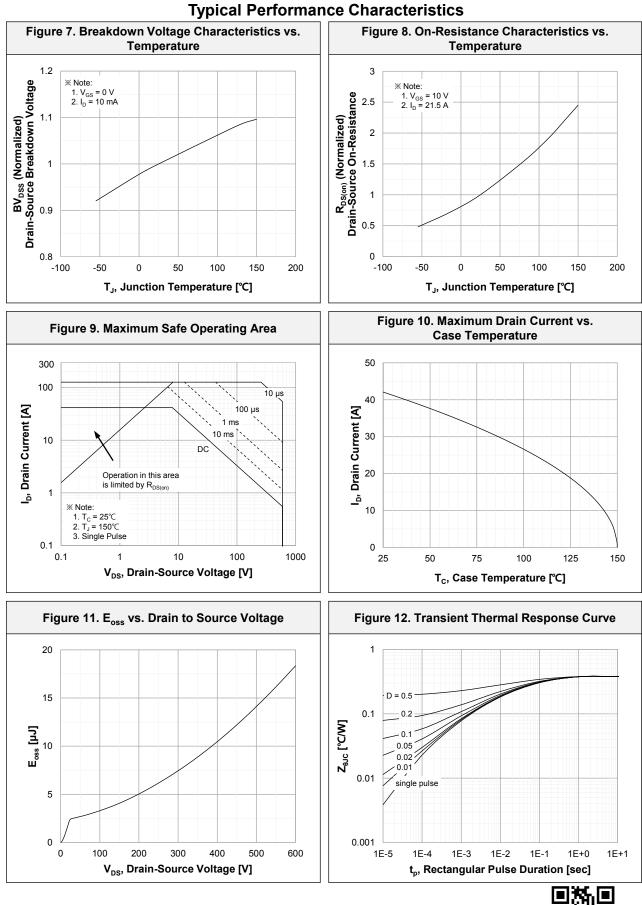

 $Q_{\rm rr}$ **XNotes**:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

2.

$$\begin{split} I_{AS} &= 6.3 \text{A}, \text{R}_{\text{G}} = 25 \ \Omega, \text{ starting } \text{T}_{\text{J}} = 25^{\circ}\text{C}. \\ I_{\text{SD}} &\leq 21.5 \text{ A}, \text{ di/dt} \leq 100 \text{ A}/\mu\text{s}, \text{ V}_{\text{DD}} \leq 400 \text{ V}, \text{ starting } \text{T}_{\text{J}} = 25^{\circ}\text{C}. \end{split}$$
3.

®

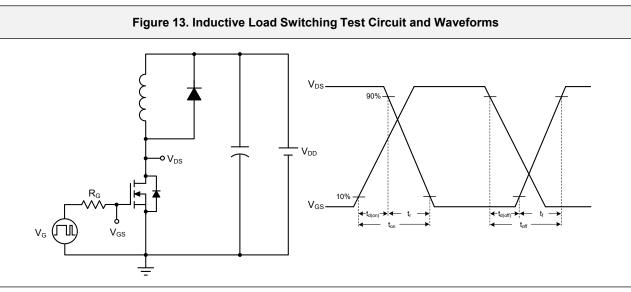

CHX

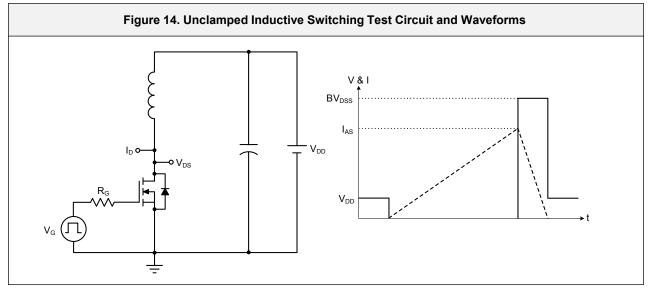
REV.E(3)

C03246

R MHCHXN www.jshxm.com

HXMH60M75P N-Channel Power MOSFET


C03246


R MHCHXN www.jshxm.com

HXMH60M75P

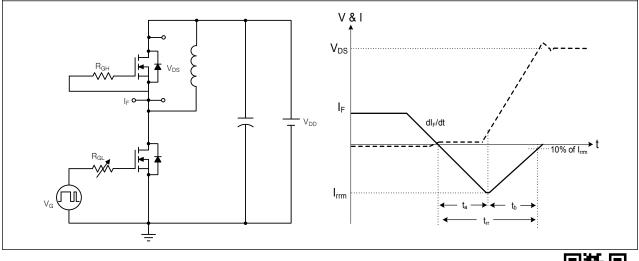
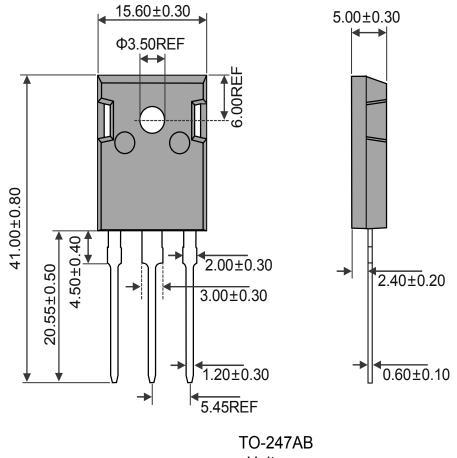

N-Channel Power MOSFET

Figure 15. Peak Diode Recovery dv/dt Test Circuit and Waveforms



Package Outlines

TO-247AB

Unit:mm

DISCLAIMER

1. Above specification may be changed without notice. MHCHXM will reserve authority on material change for above specification.

2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.

3.When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. MHCHXM assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.

4. These specification sheets include materials protected under copyright of MHCHXM. Reproduction in any form is prohibited without the specific consent of MHCHXM.

5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized MHCHXM sales agent for special application request.

6.Statements regarding the suitability of products for certain types of applications are based on MHCHXM's knowledge of typical requirements that are often placed on MHCHXM products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify MHCHXM's terms and conditions of purchase, including but not limited to the warranty expressed therein.

7. This publication supersedes & replaces all information previously supplied. For additional application information, please visit our website http://www.jshxm.com, or consult your nearest MHCHXM's sales office for further assistance.

