HXMC65N160S3N-Channel SiC Power MOSFET MOSFET

iv-Chainlei Sic Fower ivit

Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitance
- Easy to Parallel and Simple to Drive
- 15V / 0V V_{GS} compatible with most flyback controllers

V _{DS}	=	650	V
R _{DS(on)}	=	160	$m\Omega$
I _D @25°C	=	20	A

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency
- Reduction of heat sink requirements

TO-252-2L

Applications

- Solar and UPS inverters
- On Board Charger
- High voltage DC/DC converters
- Switched mode power supplies
- Load switch
- LED/LCD/PDP TV and monitor Lighting

Maximum Ratings (T_c=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
V _{DSmax}	Drain-Source Voltage	650	٧	V _{GS} =0V, I _D =100μA		
V _{GSmax}	Gate-Source Voltage	-10/+23	٧	Absolute maximum values		
V_{GSop}	Gate-Source Voltage	-50/+15+18	٧	Recommended operational values		
	Continuous Drain Current	20		V _{GS} =15V, T _c =25°C	Fig. 19	
I _D		14	_	V _{GS} =15V, T _c =100°C		
		21	Α	V _{GS} =18V, T _c =25°C		
		15		V _{GS} =18V, T _c =100°C		
I _{D(pulse)}	Pulsed Drain Current	50	Α	Pulse width t _p limited by T _{Jmax}		
P _D	Power Dissipation	95	W	T _c =25°C, T _J =175°C	Fig. 20	
T _J , T _{STG}	Operating Junction and Storage Temperature	-55 to +175	Ĉ			
TL	Solder Temperature, 1.6mm from case for 10s	260	Ĵ			

C00000 - 1 - REV-N1257

HXMC65N160S3

N-Channel SiC Power MOSFET MOSFET

www.jshxm.com

Electrical Characteristics (T_C=25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	650	/	/	V	V _{GS} =0V, I _D =100μA		
V Cata T	Cata Threathald Voltage	2.4	3.2	4.0	v	V _{DS} =V _{GS} , I _D =2mA	Fig. 11	
$V_{GS(th)}$	Gate Threshold Voltage	/	2.4	/	\ \ \	V _{DS} =V _{GS} , I _D =2mA, T _J =175°C	Fig. 11	
I _{DSS}	Zero Gate Voltage Drain Current	/	1	10	μΑ	V _{DS} =650V, V _{GS} =0V		
I _{GSS+}	Gate-Source Leakage Current	/	10	50	nA	V _{DS} =0V, V _{GS} =23V		
I _{GSS-}	Gate-Source Leakage Current	/	10	50	nA	V _{DS} =0V, V _{GS} =-10V		
		/	160	220	mΩ	V _{GS} =15V, I _D =7A		
ь.	Busin Sayusa On State Besisten as	/	210	/	mΩ	V _{GS} =15V, I _D =7A, T _J =175 ℃	Fig. 4,5,6	
$R_{DS(on)}$	Drain-Source On-State Resistance	/	130	180	mΩ	V _{GS} =18V, I _D =7A		
		/	173	/	mΩ	V _{GS} =18V, I _D =7A, T _J =175℃		
		/	6.2	/		V _{DS} =20V, I _{DS} =7A		
g fs	Transconductance / 5.6 / S	8	V _{DS} =20V, I _{DS} =7A, T _J =175 ℃	Fig. 7				
C _{iss}	Input Capacitance	/	448	/		V _{GS} =0V	Fig.	
C _{oss}	Output Capacitance	/	44	/	рF	V _{DS} =400V		
C _{rss}	Reverse Transfer Capacitance	/	2.2	/		f=1MHz	17,18	
E _{oss}	C _{oss} Stored Energy	/	2.8	/	μ	V _{AC} =25mV	Fig. 16	
E _{ON}	Turn-On Switching Energy	/	24	/		V _{DS} =400V, V _{GS} =0V/15V		
E _{OFF}	Turn-Off Switching Energy	/	16	/	μ	I _D =7A, R _{G(ext)} =2.5Ω, L=100μH		
t _{d(on)}	Turn-On Delay Time	/	11	/				
t _r	Rise Time	/	8.6	/		V _{DS} =400V, V _{GS} =0V/15V, I _D =7A		
t _{d(off)}	Turn-Off Delay Time	/	18.2	/	ns	$R_{G(ext)}=2.5\Omega$, $R_L=80\Omega$		
t _f	Fall Time	/	14.6	/				
R _{G(int)}	Internal Gate Resistance	/	7	/	Ω	f=1MHz, V _{AC} =25mV		
Q _{GS}	Gate to Source Charge	/	4.6	/		V _{DS} =400V		
Q _{GD}	Gate to Drain Charge	/	3.8	/	nC	V _{GS} =0V/15V	Fig. 12	
Q _G	Total Gate Charge	/	12.6	/		I _D =7A		

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V	Diado Famueud Voltage	4.2	/	V	V_{GS} =-5V, I_{SD} =3.5A, T_{J} =25 $^{\circ}$ C	Fig.
V _{SD}	Diode Forward Voltage	3.6	/		V _{GS} =-5V, I _{SD} =3.5A, T _J =175℃	8,9,10
Is	Continuous Diode Forward Current	/	16	Α	T _C =25°C	
t _{rr}	Reverse Recover Time	12	/	ns		
Q _{rr}	Reverse Recovery Charge	28	/	nC	V _R =400V, I _{SD} =3.5A	
I _{rrm}	Peak Reverse Recovery Current	1.8	/	Α		

C00000 -2- REV-N1257

HXMC65N160S3

N-Channel SiC Power MOSFET MOSFET

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
R _{θJC}	Thermal Resistance from Junction to Case	1.58	/	°C /\w/		
$R_{\theta JA}$	Thermal Resistance from Junction to Ambient	/	40 °C/W			

C00000 -3- REV-N1

www.jshxm.com

Typical Performance

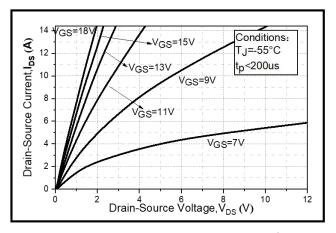


Figure 1. Output Characteristics T_J = -55°C

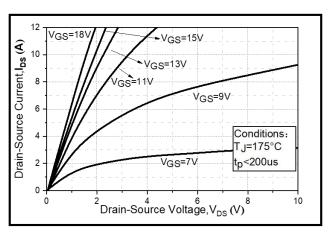


Figure 3. Output Characteristics T_J = 175°C

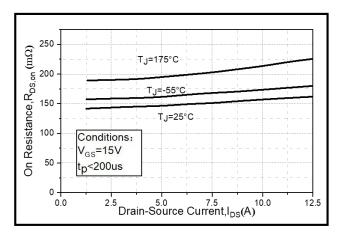


Figure 5. On-Resistance vs. Drain Current For Various
Temperatures

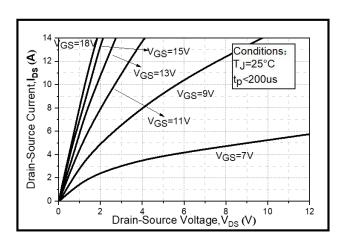


Figure 2. Output Characteristics T_J = 25°C

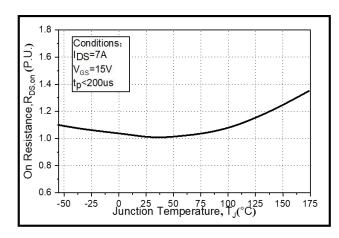


Figure 4. Normalized On-Resistance vs. Temperature

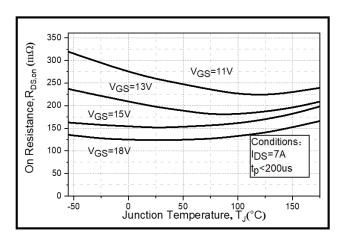


Figure 6. On-Resistance vs. Temperature For Various Gate
Voltage

C00000 -4- REV-N1257

Typical Performance

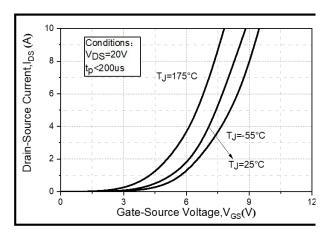


Figure 7. Transfer Characteristic for Various Junction Temperatures

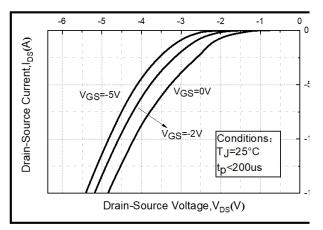


Figure 9. Body Diode Characteristic at 25°C

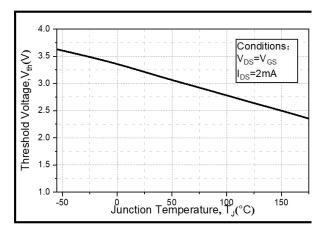


Figure 11. Threshold Voltage vs. Temperature

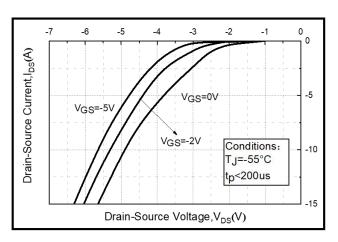


Figure 8. Body Diode Characteristic at -55°C

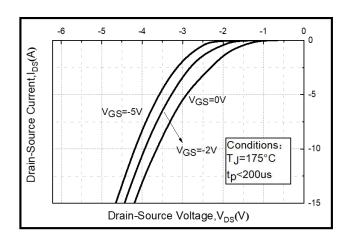


Figure 10. Body Diode Characteristic at 175°C

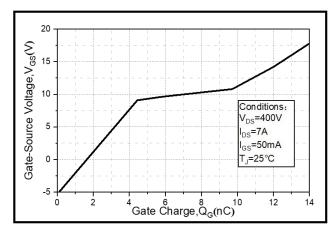


Figure 12. Gate Charge Characteristics

C00000 - 5 - REV-N1257

www.jshxm.com

Typical Performance

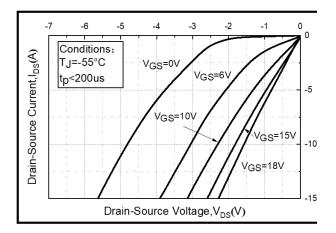


Figure 13. 3rd Quadrant Characteristic at-55°C

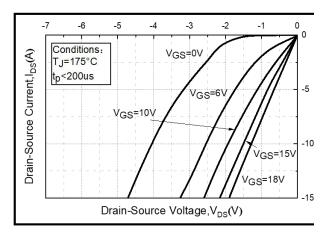


Figure 15. 3rd Quadrant Characteristic at 175°C

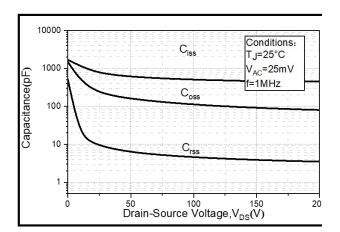


Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

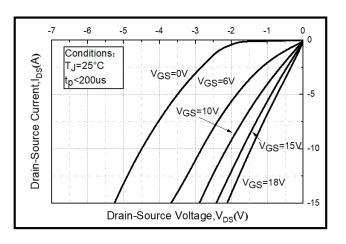


Figure 14. 3rd Quadrant Characteristic at 25°C

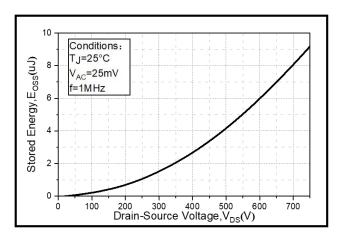


Figure 16. Output Capacitor Stored Energy

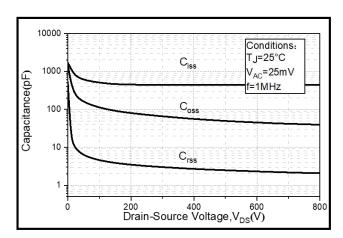


Figure 18. Capacitances vs. Drain-Source Voltage (0 - 800V)

C00000 - 6- REV-N1257

Typical Performance

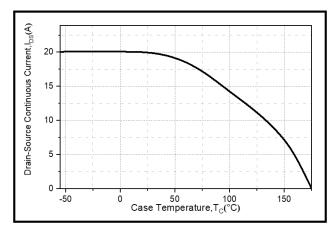


Figure 19. Continuous Drain Current vs.

Case Temperature

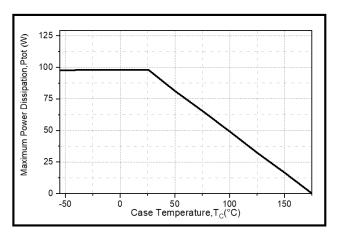


Figure 20. Maximum Power Dissipation vs.

Case Temperature

C00000 - 7 - REV-N1257

www.jshxm.com

Test Circuit Schematic

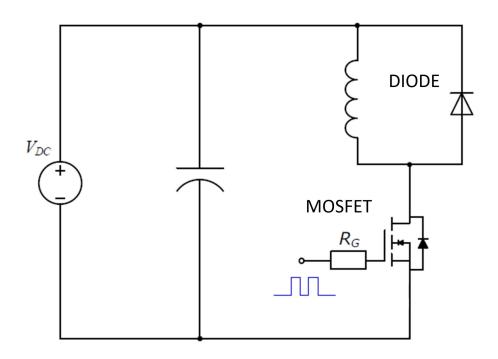
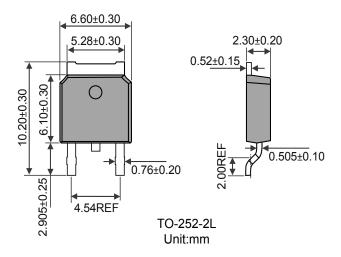
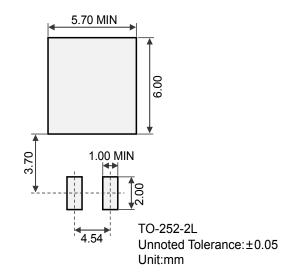


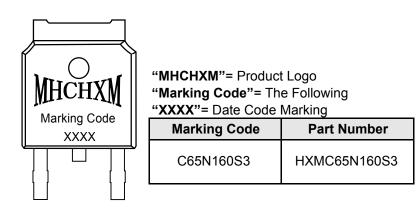
Figure 21. Clamped Inductive Switching
Waveform Test Circuit

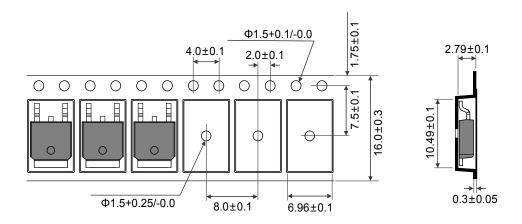


C00000 - 8 - REV-N1257



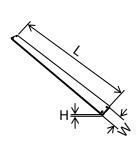
Package Outline Dimensions & Suggested Solder Pad Layout

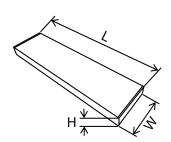

Package Outline Dimensions


Suggested Solder Pad Layout

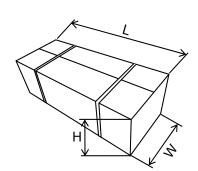
Marking Information

Reel Tape Dimensions (Dimensions in mm)

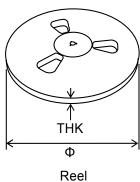

C00000 - 9 - REV-N1257


Packing Information

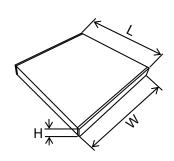
Packaging	Part Number	Quantity(pcs)	Size(mm)
	Tube	80	L540×W20×H5
Tube	Inner Box	4000	L570×W115×H55
	Outer Box	20000	L595×W320×H135
	Reel	3000	Ф330×THK17
Reel	Inner Box	3000	L350×W340×H25
	Outer Box	30000	L355×W300×H360


Packaging:Tube

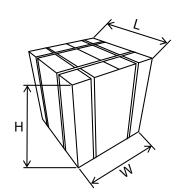
Tube



Tube Inner Box



Tube Outer Box


Packaging:Reel

Reel Inner Box

Reel Outer Box

C00000 - 10 -REV-N1257

HXMC65N160S3 N-Channel SiC Power MOSFET MOSFET

DISCLAIMER

- 1. Above specification may be changed without notice. MHCHXM will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. MHCHXM assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of MHCHXM. Reproduction in any form is prohibited without the specific consent of MHCHXM.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized MHCHXM sales agent for special application request.
- 6.Statements regarding the suitability of products for certain types of applications are based on MHCHXM's knowledge of typical requirements that are often placed on MHCHXM products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify MHCHXM's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- 7.This publication supersedes & replaces all information previously supplied. For additional application information, please visit our website http://www.jshxm.com, or consult your nearest MHCHXM's sales office for further assistance.

C00000 - 11 - REV-N1257